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Abstract 

Buildings can be operated in an energy-flexible manner while respecting occupant thermal 

comfort. This energy flexibility of building operations, both in time and quantity, can be harnessed 

by the electrical grid for load balancing. In the context of smart grid and intelligent buildings, the 

concept of energy flexibility in buildings broadens the existing demand management thinking from 

the top-down one-way control to two-way communications. This paper, extending studies on 

thermostat controls of heating and air conditioning systems for demand response, evaluates the 

impact of different control schemes on the energy flexibility of residential buildings. Two control 

strategies, Model Predictive Control (MPC) and Rule-Based Control (RBC), are investigated for 

a space heating system using co-simulation studies. Four indicators are introduced and adapted 

from the literature to assess the control performances of the strategies. Simulation results show 

that different flexibility indicators favour different control strategies in this case study. For demand 

response events of four hours, the MPC strategy presents two to three times of flexible energy than 

that of RBC. MPC also delivers 20% more of maximum power reduction during the events against 

RBC. The RBC strategy, on the other hand, is twice of MPC for flexible energy efficiency. This 

evaluation work can be beneficial to guide the control system design of new buildings or control 

retrofits of existing buildings that consider better grid-building interactions for the future. 
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Introduction 

Demand Side Management (DSM) has been considered as a feasible solution by the electrical 

utility to reduce its peak power demand. Comparing with operating reserved peak plants or 

purchasing power from other resources in the period of power scarcity, DSM has been shown to 

be more cost-effective and reduces carbon dioxide emissions (Davito et al. 2010). When the grid 

is integrated with renewable energy sources (RES), DSM can be more instrumental for the grid to 

balance its supply and demand. The variability of renewables and their dependence on climate 

conditions add challenges to the grid operation.  

Buildings, due to their high demand for electrical power, could be managed as a key asset for DSM 

(Li et al. 2017). Among the DSM approaches, various Demand Response (DR) programs have 

been piloted and put into practices during the past decades, for instance, for load shifting (Palensky 

& Dietrich 2011) and load shedding (Lanzisera et al. 2015).  

DR programs have been evolving through time in response to technology advancement and new 

challenges. As the understanding grows for the smart grid and intelligent buildings, new ideas are 

required to fit into the new context. The terminology of energy flexibility is a more general term 

than the existing ones used in the DSM communities, such as demand limiting, load shedding, 

shifting and shaping (Alstone et al., 2017). Instead of viewing the demand from the top-down 

perspective, the term energy flexibility includes considerations of two-way communications and 

interactions between the grid and buildings. In such a way, the buildings are regarded not merely 

as consumers but prosumers (Karnouskos et al. 2012). 

Three types of systems in or around buildings contribute to energy flexibility: energy storage 

systems, Distributed Energy Resources (DERs) or alternative fuels supplying to the buildings. The 

storage systems include the thermal mass of buildings, Phase Change Materials (PCM) applied to 

the building envelope or thermal storage, domestic water tanks, ice storage and battery. DERs 

incorporate building integrated photovoltaic panels, solar thermal collectors and wind turbines. 

The last type of flexibility is through the fuel switch. For instance, gas or oil, if existing, can sustain 

the building’s thermal demand during peak electricity prices. 

A more formal yet broad definition states that the energy flexibility of a building is “the ability to 

manage its demand and (energy) generation according to its local climate conditions, user needs 

and energy network requirements” by the Annex 67 of Energy in Buildings and Communities 



(EBC), International Energy Agency (IEA) (Jensen et al. 2017). It is worth noting that the Annex 

67 does not address the very short timescale storage in seconds for frequency stabilization (Ulbig 

et al. 2014). The flexibility in the time dimension discussed in the Annex and this paper is on the 

scale of hours, which is consistent with the diurnal peak durations of the grid. Like the energy 

performance certificate, the flexibility can be added as an extra label on buildings. For a broader 

context and application of energy flexible buildings, the Annex 67 position paper provides more 

details (Jensen et al. 2017). 

Sequential to the Annex 67 project, several other national and international projects were launched 

to address similar issues. In 2017, the European Energy Performance of Building Directive 

(EPBD) initiated a project called “Smart Readiness Indicator (SRI)” for buildings. In the SRI 

system, energy flexibility is adopted as one of the eight indicators to assess the smart readiness of 

a building. In 2018, a project called GridOptimal was launched by the New Building Institute and 

the United States Green Building Council (USGBC). Similar to the USGBC Leadership in Energy 

and Environmental Design (LEED) program, the project aims to develop a new rating system to 

standardize metrics and provide guidelines to evaluate levels of interactions between the grid and 

buildings (New Buildings Institute, 2018). In 2019, the U.S. Department of Energy started a multi-

laboratory collaboration on the project “Grid-interactive efficient buildings (GEB)”, which 

explores to combine energy efficiency measures of buildings with the extra capabilities of grid 

interactions to provide ancillary services to the grid (Nuekomm et al. 2019). 

The initiations of those projects indicate that it is still in the developing process of a standardized 

framework to quantify and evaluate the building energy flexibility. Among the previous studies, 

Finck et al. (2018) had a thorough review of earlier DR studies and summarized the Key 

Performance Indicators (KPIs) proposed in the literature which could be useful to quantify energy 

flexibility. The proposed KPIs were mostly for their specific case studies, such as for PV or thermal 

storage systems. Yin et al., (2016) studied the potential of global setpoint temperature adjustment 

of residential and commercial buildings for DR applications. The DR potential was defined as the 

difference between baseline and DR load divided by the baseline load. The DR potential was 

investigated on two levels: individual customer and substation. De Coninck & Helsen (2016) 

studied the energy flexibility of a commercial building by optimizing the operation of heat pumps 

and hot water tanks. The objective was to minimize energy cost using spot market electricity price 



with around 2 °C of thermal comfort range. (Kathirgamanathan et al., 2020) investigated three 

different KPI definitions and applied them to three different buildings.  

Two vintages of residential buildings with two types of space heating systems were studied for 

their energy flexibility through simulation studies by Le Dréau & Heiselberg (2016). The thermal 

mass was viewed as a thermal battery, where the amount of thermal energy charged and discharged 

by the building during DR events was regarded as the energy flexibility indicators. A similar 

approach was adopted in (Reynders et al. 2015, 2017), where two types of dwellings at 4 different 

construction periods were simulated. Two performance indicators were used: flexibility capacity 

and storage efficiency. These two teams regarded the building thermal mass as a thermal storage 

system and the indicators are in the unit of thermal energy, not electrical energy. (Barzegar et. al. 

2018) studied the energy flexibility of building-integrated solar photovoltaic and battery system 

and adopted indicators more specific to the electrical system. 

Among the existing studies of energy flexibility, the focus was mostly on the impact of building 

envelopes or various types of Heating, Cooling and Air Conditioning (HVAC) systems. It can be 

argued that control strategies of HVAC systems could also contribute to the potential of building 

flexibility. Furthermore, advanced control strategies (e.g., MPC) would probably present more 

potential than a simple Rule-Based Control (RBC) that was adopted in most studies.  

The objective of this work is to evaluate the impact of HVAC control strategies on building energy 

flexibility. Two control strategies RBC and MPC, as well as two MPC configurations, are 

evaluated using a set of KPIs. The RBC strategy represents the current practice, which is a stable 

and low-cost implementation. MPC represents a future advanced control scheme, which still 

suffers high cost and uncertainty in real-world applications. The two MPC methods and the RBC 

method are then compared against each other using the defined KPIs. Note that the RBC strategy 

considered in this study only reacts to DR events and does not include any pre-conditioning 

algorithm, which leads to disadvantages compared with MPC for certain indicators. 

The contribution of this paper includes a detailed evaluation of the impact of HVAC control 

strategies on energy flexibility, which complements the existing work on the evaluation of the 

impact of building envelopes and HVAC system types. The contribution also includes a detailed 

comparison of control strategies. In general, evaluation of different control methods could inform 

engineers on whether advanced control would deliver a better outcome for energy flexibility than 



simple controls, and how much better if possible. If the advanced control does provide benefits for 

the smart grid or gain points in the rating of building smartness, the evaluation analysis could be 

essential to guide control system design or retrofit. In addition, this paper has extended the existing 

KPIs to include the maximum flexible power and discussed this indicator with results. 

The paper is structured in the following sections. Section Methodology explains the methods of 

MPC and RBC in this study and introduces the KPIs adapted from existing studies. It follows an 

illustration of building and HVAC system modelling and how the controls are implemented. The 

two configurations of MPC modelling are detailed. Section Results presents the comparison and 

analysis of simulation results. The paper concludes with discussions and recommendations. 

Methodology 

Flexibility definition 

In this paper, the building energy flexibility is categorized into two types of scenarios: upward 

flexibility, and downward flexibility.  

The upward flexibility (also known as positive flexibility) is the capability of buildings to consume 

more energy when the grid confronts more power supply than its demand. This situation happens 

more often when RES is integrated into the grid, where the renewables may overload the grid 

during certain periods. An example of this situation is the “duck curve” of the Californian utility 

California Independent System Operator because of the solar generation (California ISO, 2017). 

Contrary to the upward flexibility, the downward flexibility (also known as negative flexibility) is 

the capability of buildings to consume less energy when the grid experiences less power supply 

than its demand. This scenario is similar to conventional peak load reduction.  

Essentially, the conventional grid services such as demand limiting, load shedding, load shifting, 

load tracking can be regarded as either downward flexibility, or a combination of downward and 

upward flexibility at a given time period. 

Metrics 

Four indicators are introduced in this paper to quantify energy flexibility. A conceptual building 

demand shape in response to a downward flexibility event is presented in Figure 1. The flexibility 



event occurs from 8:00 to 10:00, where	"! denotes the amount of flexible energy in kWh; ""# 

rebound energy in kWh; #!$%& maximum flexible power in kW and $'" 	event duration in hours. 

The pre-bound energy use before the event depicts the MPC anticipation effect assuming that MPC 

knows the occurrence of the event in advance. In a reactive control scheme like RBC, the energy 

rebound happens most likely after the event.  

 

Figure 1: A building demand profile responding to a downward flexibility event;  

"!: flexible energy (kWh); ""#: rebound energy (kWh); #!$%&: maximum flexible power (kW); 

$'":	event duration (h). The pre-bound depicts the MPC anticipation effect. 

Flexible energy &( 

The flexible energy quantifies the energy change against the reference scenario, either downward 

or upward, during the DR event. The cyan shaded area shown in Figure 1 indicates the downward 

flexible energy amount. A formal equation to calculate the flexible energy can be written as Eq. 

(1), where #'" is the power in the case of demand response or flexibility event (the purple curve 

in Figure 1) and #")! is the power in the reference case (the orange curve in Figure 1). 

 !! = # $%"# − %#$%'()
&!"

'
 

(1) 

Rebound energy &*+ 



The energy surge before or after the flexibility event, either positively or negatively, is called 

rebound energy. The total rebound energy ""# is defined as the equation below. 

 !() = # $%"# − %#$%'()
&!"

&#$
+# $%"# − %#$%'()

&$

&!"
 

(2) 

The first term of Eq. (2) indicates the extra energy use before the DR event; the second term 

denotes the additional energy use after the event. The two infinity signs −∞ and ∞ denote the pre-

bound and rebound horizons. They can be several hours or longer depending on the studied 

systems. In this study, ± 48 hours are used for the computation of the rebound energy because it 

is confirmed that the simulated building shows no rebound nor pre-bound longer than 48 hours. 

Flexible energy efficiency * 

The flexible energy efficiency, based on the idea of the coefficient of performance, is introduced 

to evaluate the flexibility performance in terms of energy quantity.  

 + = , -%-#*,
× 100% (3) 

Maximum flexible power +(,-. 

The maximum flexible power denotes the maximum amount of power increase or decrease during 

an event comparing to the baseline. For the grid, the maximum flexible power indicates the 

potential power reduction or increase that the consumer can achieve during the events. It can also 

be an important indicator for consumers if demand charges exist. Given that a rebound effect can 

happen during an event, two equations are defined separately for upward and downward scenarios 

as shown in Eq. (4). 

 
2!+,- = 3

max	
&!"

(%"# − %#$%)
max	
&!"

(%#$% − %"#)     for 	upwarddownward 
(4) 

Controls comparison  

The control strategies assessed for energy flexibility in this study are MPC and RBC for the HVAC 

system. Figure 2 shows the simulation framework of those two control strategies. The real-world 

building is simulated as a virtual system, represented by a high-fidelity model created in TRNSYS. 



The whole building model was calibrated using measurements. Section Modelling and 

implementation illustrates the modelling details of this study.  

The two controls are executed on the same virtual system. The control inputs of both methods are 

setpoint temperatures for the building zones and the feedback signals are “measured” zone air 

temperatures. The MPC strategy incorporates two modelling approaches: one uses the same 

detailed model as the virtual system; the other uses a reduced-order model constructed in 

MATLAB. The first MPC method using detailed modelling is relatively straightforward to 

configure for building engineers. If models in Building Performance Simulation (BPS) tools are 

already available, this configuration of co-simulations can be fairly convenient. The second 

configuration takes more time to identify suitable parametric models. It is, however, more 

computationally efficient and more suitable for deployment in the hardware for real-time control.  

  

Figure 2: Comparison of control strategies for energy flexibility: MPC vs. RBC 

The model predictive control framework 

The MPC method implemented in this work is on the supervisory level. The additional MPC 

controller does not replace room-level thermostats; it instead interacts with the local thermostats. 

Figure 3 shows the block diagram of the implementation, where the virtual system is the TRNSYS 

model as shown in Figure 2. The MPC controller, using predictions and forecast from its internal 

model, computes a time series of optimal setpoints within the control horizon. It then sends the 

optimal setpoint at the next sampling interval to the room thermostats. The thermostats, using their 

control logic, determine whether to request a response from the serving HVAC system or not. In 

this implementation, the thermostats are modelled as an idealized controller in TRNSYS.  

Virtual system
(Detailed 
model)
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Figure 3: Supervisory model predictive control of the HVAC system 

The objective of MPC is to maximize energy flexibility during DR events subject to thermal 

comfort constraints. Maximizing energy flexibility means decreasing energy use during the 

downward flexibility event or increasing energy use during upward flexibility. This objective may 

or may not increase flexibility efficiency. The formulation of the objective function and the MPC 

implementation are detailed in Section Modelling and implementation. 

Rule-based control strategy 

The RBC strategy reacts to the DR event when it occurs by modulating the setpoint temperature. 

This means that the RBC strategy does not know the occurrence of events ahead and does not 

prepare the building for the events through pre-heating or pre-cooling. The implemented RBC 

setpoint control in this study is to: 

• decrease the reference setpoint in the downward flexibility event; 

• increase the reference setpoint in the upward flexibility event. 

The magnitude of setpoint change is subject to varying comfort constraints and reference setpoint. 

The RBC strategy assumes that the setpoint always goes to the comfort constraint boundary within 

one timestep (15 minutes in our case). It is also assumed that the setpoint (not necessarily the zone 

temperatures) goes back to the reference level until the end of the event within one timestep. The 

RBC strategy is implemented as an idealized controller in TRNSYS; i.e., no PID controller is 

implemented. 



For the sake of simplicity, only downward flexibility results were included and discussed in this 

paper for both RBC and MPC. Results for upward flexibility using the RBC method can be found 

in (Zhang & Kummert, 2018). 

Modelling and implementation 

Building model 

The selected residential building for the study is the twin houses at the Canadian Centre for 

Housing Technology (CCHT) (see Figure 4 for the picture of the houses). The layout of the houses 

is to represent typical single-family dwellings in Canada, which include three stories: a basement, 

a main floor on the ground, a second floor, an attic and a garage. The main floor serves as a living 

space including a living room and a kitchen. The second floor serves as sleeping rooms. The total 

floor area of the houses is about 283 m2. The construction properties were based on the Canadian 

standard R-2000 (Natural Resources Canada, 2012). The design value of the wall insulation was 

3.5 m2K/W and the windows were coated with a low-emissivity film and filled with argon. The 

design value of the infiltration rate was 1.5 per hour at 50 Pa. (Manning, Swinton, Szadkowski, 

Gusdorf, & Ruest, 2007).  

The detailed building model was constructed in TRNSYS and calibrated using historical 

measurements. The whole building model and components, as well as calibration results, are 

detailed in (Zhang, 2018). Three conditioned zones were included in the model, i.e., basement, 

main floor and the second floor. The attic and garage were modelled as unconditioned zones. The 

present paper only reports the controls of the space heating system. The heating system is electric 

baseboard, which is a common practice in the province of Quebec in Canada. The zone controller 

was modelled as an idealized thermostatic control. Each conditioned zone is controlled 

independently with its own thermostat. 



 

Figure 4: The twin houses at the Canadian Centre for Housing Technology for comparative 

studies 

The second column of Table 1 shows the assumption of the occupancy schedule of the basement 

and main floor. Note that the sleeping floor is not actively controlled, which is set as a constant 

reference temperature setpoint. The actively controlled floor area is about 180m2. The second 

column shows the assumption of DR events occurrence, each of which is assumed to last four 

hours.  

Table 1: Demand response and occupancy schedule 

 Occupancy DR event 
Morning 06:30~08:00 05:30~09:30 

Afternoon 16:30~22:00 16:30~20:30 

Comfort constraint 

By controlling the HVAC system, the energy flexibility is possible due to the thermal storage in 

the building mass, if no active thermal storage system existing in the building. The thermal mass 

is a passive attribute of buildings, but the thermal storage can be indirectly controlled via the 

activation and deactivation of the HVAC system. The thermal comfort thus should be an important 

boundary condition for energy flexibility.  

In this study, it is assumed that the reference setpoint of the building for each floor is constantly 

21 °C. The occupancy schedule impacts the thermal comfort range: a larger thermal comfort band 



is assumed for the unoccupied period and a narrower comfort band for the occupied period as 

shown in Table 2. 

Table 2: Thermal comfort constraints for heating and reference heating setpoint 

 Occupied Unoccupied 
Comfort constraint 20 ~ 23 °C 18 ~ 25 °C 
Reference setpoint 21 °C 

MPC with detailed modelling 

In the MPC configuration with detailed modelling, the controller model uses the same model as 

the virtual system as shown in Figure 2. In other words, there is no modelling error in this MPC 

formulation. 

Objective 

The objective function is defined as in Eq. (5) to minimize the total energy use while satisfying 

the defined thermal comfort. The term on the left-hand side denotes the total electricity cost over 

the control horizon with ,/  indicating the power demand at time -  and ./  the Time-Of-Use 

(TOU) electricity price. The price during the events is twice of that out of the events. The same 

price signal is used in both MPC methods. The term on the right-hand side denotes the penalty 

cost of zone temperature deviations from the comfort levels. // 	represents zone temperatures at 

time - and /0#,/  and /2#,/  represents the upper bound and lower bound of the thermal comfort 

respectively. 0	denotes a scaling coefficient so that the penalty cost is in the same dimension as 

the energy cost. The penalty function is evaluated as zero when the room temperature is between 

the defined comfort range. When the zone temperatures are outside of the comfort bounds, the 

penalty function becomes more dominant in the overall objective function. The final value of 0 is 

obtained through trial and error based on the performance of the optimization algorithm and the 

acceptable tolerance of violation of thermal comforts is assumed to be 0.5 °C. 

 A = 	BCD.E. + F$max$0,/3 −/45,3	'+max$0,/65,3 −/3	''G (5) 

Implementation 

The MPC framework is implemented using TRNSYS-GenOpt co-simulation. GenOpt is a generic 

optimization program developed primarily for building systems. It provides users with the freedom 



to define their own forms of objective functions or penalty functions and does not require 

derivatives of the objective functions. Figure 5 presents how TRNSYS and GenOpt interact with 

each other in the optimal control process (Quintana & Kummert, 2015).  

 

Figure 5: Co-simulation framework between TRNSYS and GenOpt for model predictive control 

Before the initialization of the optimization process, template TRNSYS files need to be created 

listing optimization parameters, inputs and outputs. During the iterations, GenOpt tries different 

values for the optimization parameters within the defined search space and mesh points and 

computes the objective function for each parameter combination. The optimization terminates with 

the minimum objective function value, where GenOpt, however, does not guarantee a global 

minimum.  

This study employed the “Hybrid Generalized Pattern Search (GPS) Algorithm with Particle 

Swarm Optimization (PSO)” from the algorithm library. This hybrid algorithm performs 

optimization in two steps. First, it launches the PSO algorithm for user-defined generations (10 

generations in this study); Once the PSO has finished successfully, the hybrid algorithm then starts 

the second GPS algorithm based on the results obtained from the PSO algorithm. When the 

objective function does not decrease on defined reduced mesh points, the hybrid algorithm then 

terminates the optimization.  

The co-simulation configuration is rather straightforward. However, because of the derivative-free 

optimization algorithm in GenOpt, it is fairly time-consuming for the tool to converge to an optimal 



solution. Only 24 hours of optimization with a 15-minute time step was therefore used in this 

study.  

The configuration and implementation of the co-simulation framework are described briefly in the 

following steps. 

1. Determine control objectives and parameters/variables, as well as constraints of the 

investigated system such as physical constraints and system operation bounds; 

2. Formulate the objective function in equations; if needed, add penalty function in the 

objective function to consider violation costs of constraints; 

3. Model the studied system in one of the BPS tools and simulate for a year with the baseline 

control strategy; 

4. Prepare configuration files for GenOpt and the selected BPS tools for initial testing runs to 

debug syntax errors; 

5. Verify initial optimization results to ensure the algorithm converges to reasonable 

solutions; 

6. Conduct formal optimization-simulation runs and post-process optimization results;  

7. Compute performance indicators and evaluate the optimal control strategy against the 

baseline case. 

MPC with the reduced-order model 

In the MPC configuration with the reduced-order model, the controller model is a grey-box model 

of the building. It is formulated in the linear state-space structure in MATLAB. Then co-simulation 

between TRNSYS and MATLAB is configured using the TRNSYS Type 155. 

Reduced-order model formulation 

The Resistance-Capacitance (RC) network was used to represent the building model in the 

reduced-order modelling case, where one resistance and one capacitance were employed to model 

one thermal zone. This choice was made based on studies in (Mathews et al., 1994; Bacher & 

Madsen, 2011; Rodríguez Jara et al., 2016). A network of six resistances and three capacitances, 



based on this lumped capacitance and resistance assumption, was drawn for the studied house. 

Figure 6 shows the thermal network diagram. 

 

Figure 6: RC network model structure of the CCHT houses 

In the network, one conditioned zone is denoted by one node with /7, /2 and /# denoting the zone 

temperatures of the three zones respectively: sleeping room (the second floor), living room (the 

main floor) and basement. 77 , 72 	and 7#  represent the total heat added in each zone, which 

includes the controlled heating flowrate, internal gains and solar gains. The outdoor dry-bulb 

temperature and ground temperature are inputs of the model, shown by a node in the diagram. 

Every two nodes are connected with one thermal resistance.  

Based on the RC network, a first-order differential equation can be written for each zone. The 

overall model is therefore a 3rd order system. The differential equations can be further formulated 

using a vectorized continuous state-space equation as shown in Eq. (6). Given that the output 

variables are the same as the state variables, denoted by the vector 8 = [/7 /2 /#]8, the output 

equation can be excluded. To more conveniently formulate the objective function, as shown in Eq. 

(11), the control inputs, denoted by the vector ,, are separated from the uncontrolled inputs, 

denoted by the vector	<. The control inputs , = [,7 ,2 ,#]8 are the heating flowrates from 

the space heating system in each zone; the uncontrolled inputs < =

[79:/ 79:2 79:# 77;2 /%$# /<] include separately the internal heat gains in each zone, 

the overall solar incidence radiation on the building surfaces, ambient dry bulb temperature and 

ground temperature. A set of parameters [== => =?] are used in the model for each zone as a 
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coefficient that converts solar radiation into solar gains to each zone. These parameters are 

included in the parameter matrix to be identified from the data.  

 Ḣ = J0	H + K0E + -0L (6) 

The triplet (?@ , @@ , "@) is derived through transforming the parameters of the differential equations 

into a matrix form. It can be seen that only non-variant parameters are included in the three 

matrices. 
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Parameter estimation 

The triplet (?@ , @@ , "@)  includes 12 unknown parameters altogether. They are all physical 

parameters of the building system; the range of these parameters can, therefore, be estimated a 

priori. Estimating the parameters using measured or synthetic data is a common practice, where 

an optimization problem is solved to minimize the prediction errors of the model against the data.  

In this study, the synthetic data generated from the detailed model was used for parameter 

estimation. The measured data was not directly used for this process because it was observed that 

the measured temperature narrowly swung within the normal operation of HVAC systems, which 

did not contain enough excitation information for the model to be identified. The measured data, 

however, as mentioned in the Section Methodology, was used to calibrate the detailed model.  

The training data was generated using the optimal setpoint profiles proposed by GenOpt, which 

presented large oscillations (about 7 °C) as can be seen in the later discussions. The period of the 

data lasts 12 days with a sampling rate of 15 minutes. Each variable, therefore, contains 1152 

samples. The defined inputs were ambient dry-bulb temperature, solar radiation and controlled 

heating flowrates; the outputs (also the system states) were the three zone temperatures. All the 



variables were “measured” from the detailed model; no state estimators were therefore designed 

for the parameter identification process. 

After determining the data for the parameter estimation, the next step was to discretize the 

continuous-state equation in Eq. (6) to a discrete-time form as shown in Eq. (7): 

 H(S + 1) = JH(S) + KE(S) + -L(S) (7) 

The triplet (?, @, ") ∈ .?×?×B denotes the discretized form of (?@ , @@ , "@). Using the discretized 

form, the one- or k-step ahead prediction could be easily formulated. Eq. (8) presents the 1-step 

ahead estimation of the outputs (or system states). 8C(- + 1) represents the estimated system states 

at time - + 1, which is a function of the states 8(-), the control inputs ,(-) and the disturbance 

inputs <(-) at the time -  as well as the parameter matrices (?, @, "). In this prediction, the 

system states, control inputs and disturbance inputs at the time - are all known; the only unknown 

parameters are the triplet (?, @, ") , or written in a vectorized form as 

[.= .> .? .C .D .B E= E> E? == => =?]. 

HT(S + 1) = JH(S) + KE(S) + -L(S)    for        S = 0, 1,… , W… ,X − 1 (8) 

The parameter values were then obtained by minimizing the prediction errors against the synthetic 

data. The optimization problem of the parameter estimation was formulated in Eq. (9). The 

optimization algorithm was to find the optimal parameters in the triplet (?, @, "), so that the 

predicted error from the model was minimized given the information of 8(-), ,(-) and <(-) for 

time steps - = 0,1, … , G … ,H − 1  with H  indicating the total number of samples for each 

variable.  

 
A5 = B[HT(S + 1) − H(S + 1)]6[HT(S + 1) − H(S + 1)]	

781

.9'
 

(9) 

The optimization problem for the prediction error minimization was formulated using the generic 

nonlinear constrained function “fmincon” from the MATLAB Optimization Toolbox. The 

algorithm “interior-point” was used, which could converge to an optimal solution within a few 

minutes. 

Model validation 



After the model was trained and the values were obtained for the unknown parameters, a new set 

of data was used to validate the model with the identified parameters. Both 1-step and 1-day (or 

96 steps) ahead validations were conducted as shown in Figure 7. It can be seen that the 1-step 

ahead prediction (shown in the blue curve) was fairly close to the “measured” zone air 

temperatures for all three zones. Table 3 summarizes the Rooted Mean Square Errors (RMSE) for 

both 1-step and 1-day model predictions. The 1-step ahead prediction errors for the three zones 

were all within 0.5 °C. Compared to the 1-step ahead prediction, the 1-day ahead prediction gave 

slightly worse results with larger errors observed in ten hours later. These are deemed to be 

acceptable for the control purpose as the model prediction in the MPC controller is updated every 

15 minutes. 

 

Figure 7: Validation results of the RC model respectively for the Second floor (sleeping room), 

Main floor (living room) and Basement  

Table 3: RMSE results for model validations 

 Sleeping room Living room Basement 
1-step ahead prediction 0.08 °C 0.4 °C 0.5 °C 
1-day ahead prediction 0.7 °C 1.15 °C 2.05 °C 

 

MPC formulation 



Once the model has been discretized, it can be straight-forward to formulate the prediction of the 

outputs (or states) over the prediction horizon as follows: 

 H(S + [ + 1|S) = JH(S + [|S) + KE(S + [|S) + -L(S + [|S) (10) 

#  denotes the prediction horizon and I  is the sampling interval with I = 0, 1, … , G,… , # − 1 . 

8(- + I|-)  denotes the predicted states at time interval - + I  from sampling instant - . The 

predicted values for states	8  (or outputs) and controlled disturbances , are then used to calculate 

the future control inputs by solving an optimization problem. The goal of the MPC controller is to 

either increase or decrease power demand during the flexibility events; the objective function can 

thus be formulated as a function of power cost in the following equation: 

 
A(S) = B 	E6(S + [|S)	D(S + [)	E(S + [|S)
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(11) 

,(- + I|-), as in both Eq.(10) and (11), denotes the optimal control inputs at time interval - + I, 

while 	.(- + I), defined as a positive definite matrix, denotes the varying price signal time series. 

Given the current states 8(-) and the predicted disturbances {<(-),<(- + 1), …<(- + # −

1)}, the objective function M(-) is then minimized subject to a series of constraints. Eq. (12) 

expresses the constraints in a generic formulation, respectively for the control inputs and states: 

]
$̂<H(S + [ + 1|S) = _$<(S + [)

^(S + [)H(S + [ + 1|S) ≤ _(S + [)
a(S + [)E(S + [|S) ≤ b(S + [)

 
(12) 

The first equation is an equality constraint for the states, i.e., zone temperatures. They are the 

governing equations of the building system. The second is an inequality constraint, which 

represents the state constraints at each time interval, i.e., the thermal comfort requirement that 

constraints the zone temperatures in a lower and upper bound. They are a function of time to 

consider the temperature comfort constraint change from occupied to unoccupied periods. The last 

inequality is the physical constraints on the inputs, i.e., the minimum and maximum heating 

capacity. Once the optimization algorithm converged to a solution for the optimal input vector 
{,(-|-), ,(- + 1|-), … , ,(- + # − 1|-)}, the first input signal in the vector is then sent to the 

local controller. The local controller measures the state variable and compares it with the optimal 

signal and determines whether to activate the HVAC system. The state measurements are also fed 



back to the MPC supervisory controller so that the MPC controller can update its starting states. 

The feedback loop is thus closed and moves to the next sampling interval and iterates the process.  

 

Results 

Simulation studies were conducted to control the space heating system of the CCHT houses using 

the three control methods as described above. The optimization of the controls lasted only 1 day, 

which is chosen to have the lowest outdoor dry-bulb temperature from the CWEC weather file for 

Montreal, Canada (Numerical Logics, 1999). To eliminate the initialization impact of the models, 

the whole simulation duration was 12 days. In the first 11 days, the zone temperatures were 

controlled to the reference heating setpoint, so that all methods started from the same initial states 

of the models. 

This section first presents and discusses the time series plots for each control method; then moves 

on to the quantitative results in terms of the defined KPI metrics. 

Time-series results 

Figure 8 presents the results of the MPC method using detailed controller models. The DR event 

durations are denoted by the two vertical bars. The allowable thermal comfort range is shown by 

the green dashed curves, which has a narrower range when the zone is occupied. The reference 

setpoints are 21 °C shown by the dashed yellow line and the total reference heating power use is 

shown by the blue curve. A reference power drop is seen at around 19:00 due to the internal gains 

from the 8.1 kW dryer and 1.7 kW dishwasher turned on. Power drops at around 7:00 and 17:30 

are caused by internal or solar gains in one or more zones. The optimal setpoint profile is shown 

by the dark dashed curve and the resulted optimal building heating power is shown by the red 

curve. For the sake of simplicity, only the main floor temperature is shown in the figure. All zone 

temperatures respect the defined temperature bounds as shown in the figure.  

It can be seen that MPC increases the heating setpoint slowly until the maximum temperature limit 

before the DR events both in the morning and evening. Then it decreases the heating setpoint 

during the DR events. As a result, the building consumes more electrical energy while the 

electricity is cheaper; and consumes less electricity while it is more expensive. The pre-bound 

effect of the MPC method for both DR events is obvious. The rebound effect is however more 



pronounced in the afternoon DR event. The morning rebound is almost negligible because the 

zones are unoccupied after the event. In the evening, the zones have longer occupation time and, 

in result, longer narrower thermal comfort range. When the afternoon DR event ends, the setpoint 

increases immediately to heat up the zones because the occupancy time ends 1.5 hours later. Note 

that the zones are in free-floating mode at around 13:00 and 19:30: the setpoint is decreasing but 

the zone temperatures do not follow. The setpoint even drifts below the lower bound of temperature 

limit at around 19:30. This is due to the forecast of solar and internal heat gains in the controller 

model.   

 

Figure 8: Energy flexibility results using MPC with detailed modelling for the coldest day 

In terms of preheating time, it takes about 4 hours in the morning and about 3 hours in the afternoon, 

which is similar to the 4-hour duration of both DR periods. This shows that the building does not 

necessarily require a very long preconditioning time, not longer than the DR duration in this case 

study. When the outdoor temperature is higher and solar radiation is larger in the afternoon, it 

needs less preheating time for the afternoon DR event.  

This MPC method using detailed modelling presents a very effective capability of power shifting 

in response to the DR events. It can be seen that the heating power demand remains close to zero 



for most of the DR durations. This impressive response comes at a cost that the prebound and 

rebound effects are also quite pronounced.  

The results of the MPC method with the reduced-order controller model is presented in Figure 9, 

which has the same conditions as the MPC method using detailed modelling. The legends of the 

figure are consistent with that in Figure 8. A similar pattern of the optimal setpoint profile is 

observed: MPC slowly ramps up the heating setpoint before the DR events and drops the setpoint 

during the events. As a result, the heating system uses more electrical power before the events and 

less power during the events. The difference of this MPC method is that it does not increase the 

zone temperatures to the maximum allowed limit, leaving a safety margin to the thermal 

constraints. As a result, the preheating effect is less aggressive than the MPC method with the 

detailed controller model. The reduced power use against the reference profile during the DR 

events is thus not as significant. Similarly, the prebound and rebound energy use is not as high 

either. Given that this MPC method uses a reduced-order controller model, it unavoidably presents 

prediction errors of the “real system”. This is different from the MPC method with the detailed 

controller model, which assumes perfect modelling of the real system and represents a best-case 

scenario for the optimization algorithm.  

 



Figure 9: Energy flexibility results using MPC with the reduced-order model for the coldest day 

Compared with the reference case, the MPC with the reduced-order controller model still presents 

significant power reductions during the DR periods. The prebound phenomena are also obvious 

but the rebound effect is almost negligible for both DR events. After the end of the afternoon DR 

event, the MPC decides to slightly increase the heating setpoint, which is a better decision than 

that proposed by the MPC method with detailed modelling. The main advantage of the MPC 

method with the reduced-order model is its computation time: it took about only 20 seconds for 

the whole simulation duration: 12-day simulation with 1-day optimization, which is in the same 

order as the reference case. The MPC method with the detailed modelling, however, took about 

16.3 hours for the simulation-optimization task, where most of the time was spent for the 1-day 

optimization.  

The simulation results of the RBC strategy under the same conditions are shown in Figure 10. The 

proposed reactive heuristic algorithm is described as below: before the morning DR event, keep 

the setpoint temperatures at the reference setpoint; decrease the setpoints by 1 °C from 5:30 to 

8:30; decrease the setpoints further by 2 °C to the new lower temperature bound until 9:30; reset 

the setpoints back to the reference setpoint and decrease the setpoints by 1 °C for the whole 

afternoon DR period. This heuristic setpoint algorithm is chosen because it is probably one of the 

best reactive strategies given the same conditions and constraints from the MPC methods. For 

example, the setpoint drop from 5:30 to 6:30 was determined to be 1 °C instead of 2 °C or more 

until the lower temperature bound because a 2 °C setpoint drop resulted in a larger power increase 

than the reference case at 6:30 in the simulation. It required a large heating power when the setpoint 

was reset to 20 °C, the lower temperature bound during the occupied period. This thus presented 

to be a bad strategy with a power rebound during the DR period.  

The resulting power demand profile of RBC shows that the immediate power reduction is quite 

significant, which goes almost to zero in the morning and reaches zero in the afternoon. The power 

has to increase due to the thermal comfort constraints, but it is never higher than the reference 

case. The rebound effect occurs only after the end of the DR events due to its reactive nature and 

the rebound effect is also quite significant, especially for the morning DR event.  

 



 

Figure 10: Energy flexibility results using rule-based control strategy for the coldest day 

KPI results 

Table 4 summarizes the results of the two MPC approaches and the RBC strategy using the KPI 

metrics. It can be seen that both MPC methods deliver very impressive flexible energy during the 

DR periods. The MPC methods also result in large pre-bound and rebound energy as shown in the 

fourth row. Their flexible efficiencies are less than 1 because the total rebound energy is larger 

than the flexible energy for both methods. The maximum flexible powers using the MPC methods 

almost reach the maximum potential in the morning DR event. 

The method with the reduced-order model presents less flexible energy than the one with the 

detailed model. The former, however, shows with less rebound effect. The flexible efficiency of 

the former method thus is higher than with that of the latter, especially in the afternoon event. The 

maximum flexible power of the former method is comparably significant to that of the latter. This 

result difference validates that the accuracy of the controller model has a large impact on the results 

of the MPC formulation.  

Comparing the RBC method with the two MPC methods, both MPC methods provide much larger 

flexible energy than RBC, especially in the afternoon event. The MPC method with the detailed 



controller model presents more than twice flexible energy than RBC in the morning event and 

more than three times flexible energy in the afternoon event. And this comparison is reasonable 

because the RBC algorithm represents a best-case reactive controller as mentioned previously.  

Table 4: Summary of energy flexibility indicators for MPC and RBC 

 Morning event Afternoon event 

 MPC 
(detailed) 

MPC 
(reduced order) RBC MPC 

(detailed) 
MPC 

(reduced order) RBC 

Flexible energy  
[kWh] 15.1 9.1 7.3 9.5 5.4 3.7 

Rebound energy  
[kWh] 21.0 11.7 4.7 18.2 6.8 2.6 

Flexible efficiency  
[-] 0.72 0.78 1.55 0.52 0.79 1.4 

Max flexible power 
[kW] 4.8 4.5 4.0 3.3 2.8 2.8 

 

The MPC methods also have larger maximum flexible power than RBC, but their differences are 

not as significant because all methods show very good power reduction capabilities against the 

reference case. The MPC with the detailed model presents about 20% more maximum flexible 

power than RBC; the MPC with the reduced-order model presents about 8% more maximum 

flexible power than RBC. The cost of the MPC methods is their more-obvious rebound effect than 

RBC. Both MPC methods present larger rebound energy use than their flexible energy, while the 

RBC presents less rebound energy than its flexible energy. As a result, RBC has an efficiency 

larger than 1 while the MPC methods have an efficiency smaller than 1.  

From the above discussions, it can be seen that no one approach presents absolute advantages than 

the other using the four indicators. In other words, it cannot be concluded that the MPC strategy is 

a more suitable approach than the RBC strategy to increase the building energy flexibility, at least 

not for this case study. If the objective of the building operation is to provide as much flexible 

energy as possible, MPC is shown to be a better candidate if the cost of hardware installation and 

software deployment associated with MPC is justifiable. If the objective is to increase the 

flexibility efficiency, then a fined-tuned RBC strategy is more advantageous.  



Conclusions 

Buildings can be operated in an energy-flexible manner while respecting occupant requirements 

of indoor thermal comfort. This energy flexibility, both in time and quantity, can be harnessed by 

the electrical grid to balance its supply and demand. In the context of smart grid and intelligent 

buildings, the concept of energy flexibility in buildings broadens the existing demand management 

thinking from the top-down one-way control to two-way communications. This energy flexibility 

of buildings can be generally viewed in two scenarios: upward and downward flexibility. The 

upward flexibility represents scenarios of increasing building demand during the DR events, while 

the downward flexibility represents scenarios of decreasing building demand during the events. 

The conventional grid services such as demand limiting, load shedding, load shifting, load tracking 

can be regarded as either downward flexibility, or a combination of downward and upward 

flexibility at a given time period.” 

To quantify the flexibility from this new perspective, the paper introduced four indicators, two of 

them adapted from existing literature and two others proposed by the authors. Based on the metrics, 

the paper investigated two different control methods, MPC and RBC, and evaluated their 

performances accordingly. Specifically, the MPC strategy was implemented in two different 

approaches: one with a detailed building model in the controller; the other with a reduced-order 

controller model. The former MPC, implemented using co-simulation between TRNSYS and 

GenOpt,  represents the best MPC potential due to no modelling errors. The latter, implemented 

using co-simulation between TRNSYS and MATLAB, represents a more realistic implementation 

that can be deployed in a thermostat with limited computational power. Both MPC and RBC 

methods were simulated in a feedback control loop with an idealized local controller. The RBC 

algorithm was implemented based on the best heuristic rules, subject to the same occupancy and 

thermal comfort constraints of the two MPC methods. 

Simulation results showed that both MPC implementations delivered significantly more potential 

for energy flexibility than the RBC strategy. The MPC approach using the detailed controller 

model provided two to three times of flexible energy than that of the RBC strategy during the DR 

events. The MPC approach using the reduced-order controller model, even though less impressive 

than the former MPC method, also showed about 30% more flexible energy than RBC. The MPC 

method with the detailed model takes about 16 hours to finish a 24-hour simulation, while the 



MPC method with the reduced-order model finishes the same duration of simulation within 1 

minute, in the same magnitude as the RBC method. On the other hand, the RBC method showed 

much less rebound energy; its flexible efficiency is about twice of that of the MPC methods. For 

the maximum flexible power, the MPC methods presented 8% to 20% more potential to change 

the power during the DR events than the RBC method.  

In terms of implementation effort, the RBC strategy is the easiest to implement and deploy on a 

real controller. The RBC algorithm is also more stable and reliable. In contrast, the MPC methods 

suffer high implementation costs and difficulty for scalability. For the reduced-order controller 

model, identifying a suitable model for real-world deployment is probably one of the biggest 

obstacles for MPC applications. The MPC strategy is also subject to a variable of uncertainties, 

for instance, the difficulty of modelling internal gains accurately, which may reduce its 

performance and usability.  

The limitation of the paper includes that the local thermostat was modelled as an idealized 

controller. A realistic PID controller may show different response curves that change the results 

based on the proposed indicators. The choice of the RBC algorithm is also critical when comparing 

with MPC. An RBC method with a pre-conditioning algorithm may show very different results. 

Future studies of the work could include: 

• Because the MPC configuration with detailed modelling is rather computationally-

intensive, only a one-day simulation period was investigated in the current work. A longer 

period of optimization-simulation could be conducted to assess the MPC methods under 

different climate conditions. A statistical analysis based on the whole-year simulation 

could be carried out further to investigate the overall differences between the two control 

strategies. 

• Only one building was simulated for the case study. The amount of building energy 

flexibility would be more significant if we apply the same method on a larger scale, e.g., a 

cluster of buildings or district energy systems. 

• Buildings of other types such as commercial and institutional buildings could also be 

investigated using the method detailed in this work to characterize their potential of energy 

flexibility. 



• For the MPC strategy, assumptions of perfect forecasting were made for internal gains, 

occupancy and weather. The impact of imperfect disturbance forecast could be investigated 

and a field study of the developed MPC strategy could be conducted to further test the 

effectiveness of the method. 

• The thermal comfort in the MPC formulation is defined as either a hard or soft constraint. 

If considering thermal comfort improvement as another objective, a multi-objective 

function could be defined for the MPC problem, which maximizes both energy flexibility 

and thermal comfort. In this case, a new indicator would be necessary to evaluate the 

thermal comfort changes; or to evaluate the weighted effect of both thermal comfort and 

energy flexibility at the same time. 
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