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1. ABSTRACT  
A model of a real system is required for predictive control to determine the best control 
sequence when disturbance forecasts and future system status are considered over a defined 
time horizon.  The selected model should strike a balance between its accuracy and simplicity. 
This paper presents a comparison between different modeling approaches for predictive control 
of space heating. The case study is electric baseboard heating in homes within cold climate 
regions with the objective of reducing peak electricity demand (and saving costs if tariffs 
include a peak power charge). Detailed TRNSYS models of the selected house are developed 
and predictive control is implemented by using GenOpt as the optimization tool. This approach 
is compared with optimal predictive control algorithms based on simpler models. These models 
are obtained by parameter identification using data generated from the detailed TRNSYS 
models. Both approaches use perfect forecasts for the occupancy and the weather data in order 
to focus the analysis on model differences. Results show that MPC can deliver a significant 
reduction in power demand during on-peak periods with both modelling approaches (55% with 
detailed model, 33% with simplified model). The detailed model delivers significantly better 
savings but implies a calculation time that is more than 2 orders of magnitude higher. The 
potential of both approaches is discussed in the context of residential heating control to support 
a smart grid. 

Keywords: simplified model, model predictive control, TRNSYS, GenOpt 

2. INTRODUCTION  
In cold climates, the peak power demand on the electrical grid is generally reached during the 
coldest day(s) of winter, due to the significant contribution of space heating to the peak load. 
In the Canadian province of Québec, the most recent historical peak was reached on January 
22nd, 2014 at 7h26 AM, while the temperature was below -25 °C across most of the province 
(Hydro-Québec, 2014). It is estimated that residential electric heating accounts for 30 % of the 
grid peak electrical demand, with a market share of 70 % (Kummert, Leduc , & Moreau , 2011). 
Critical peak events typically represent some 50 h per year, generally occurring during a 
morning peak (approximately 6 AM to 9 AM) and an afternoon/evening peak (approximately 
4 PM to 8 PM). Utility companies place a high value on kWh used during these critical peak 
events, and this paper looks at the potential of reducing the peak power demand of residential 
heating in a typical house during these two daily peak periods. The analysis focuses on the 
coldest day of the year, which is January 12th for the typical weather file used in the study.

Model predictive control has shown potential for load shifting and energy and costs savings by 
taking into account predictions of process states in the decision making. (Oldewurtel F. , Parisio, 
Jones, & Morari, 2010) and (Oldewurtel F. , et al., 2012) compared the current practice, Rule 
Based Control (RBC), with prediction-based approaches and confirmed additional energy 
savings by using a Stochastic Model Predictive Control (SMPC) as well as a predictive non-
stochastic controller, so called Certainty Equivalence (CE).



P04, Page 2 

9th International Conference on System Simulation in Buildings, Liege, December 10-12, 2014 

MPC has been practically applied and theoretically investigated in chemical engineering since 
1960s (Morari & Lee, 1999) and lately it has drawn increasing interest for supervisory control 
in building engineering field (Coffey, 2013).The idea of MPC proposed for building 
supervisory control can be dated back as early as in 1988 (Kelly, 1988) but it does not witness 
a steady growing research until the last decade (Prívara, et al., 2013). 

The MPC research on buildings has seen a wide variety of systems including ice and building 
thermal mass storage (Henze, Felsmann, & Knabe, 2004) and (Henze, Le, Florita, & Felsmann, 
2006), window operation for mixed natural and mechanical ventilation in an office building 
(May-Ostendorp P. , Henze, Corbin, Rajagopalan, & Felsmann, 2011) and (May-Ostendorp P. , 
Henze, Rajagopalan, & Corbin, 2013),  VAV control (Wang & Jin, 2000) and (Nassif, Kajl, & 
Sabourin, Simplified model-based optimal control of VAV air conditioning system, 2005a), 
(Nassif, Stainslaw , & Sabourin, 2005b) and other systems proposed in the Model Predictive 
Control in Buildings workshop in Canada (IBPSA-Canada, 2011) such as thermally activated 
building system with ground coupled heat pump (Verhelst, Sourbron, Antonov, & Helsen , 
2011), chiller and cooling tower system (Ma & Borrelli, 2011), and so on.  

Among the research issues in MPC on buildings, the foremost is the choice of building models, 
which determines the effectiveness and efficiency of control strategies. The main building 
models utilized by researchers can be divided into three categories: physical models built by 
building energy software programs (e.g. EnergyPlus, TRNSYS), grey box (e.g. RC network) 
and data-driven black box models. Because of the complexity and high-computation 
requirement of the physical models, they are mostly used with other optimization tools (e.g. 
GenOpt) for offline predictive control (Coffey, 2013) and control rules extraction (May-
Ostendorp P. , Henze, Rajagopalan, & Corbin, 2013).  Simpler models can be used for real-
time online MPC due to their better suitability for online parameter identification and their 
lower computational requirements.

A simplified model for the transient heat transfer through a multilayer structure can be 
developed based on simulating the heat transfer by the concept of lumped resistance and 
capacitances.  There exist two general approaches for obtaining proper values for this network 
of lumped resistance and capacitances. One approach is based on physical characteristics of 
building elements. This approach requires knowledge about details of building elements 
including zones specifications, constructions and materials. Sturzenegger et al. in 
(Sturzenegger, Gyalistras, Semeraro, Morari, & Smith, 2014) developed a Toolbox for 
generation of bi-linear resistance-capacitance models based on this approach. Lehmann et al. in 
(Lehmann, Gyalistras, Gwerder, Wirth, & Carl, 2013) also proposed an intermediate- 
complexity (12th order) bilinear model for a single room. The other approach is based on 
parameter identification. This approach requires sufficient excitation conditions that yield 
determining a precise model. This approach can be performed in time or frequency domain. 
Also there exist different mechanisms for identifying the parameters. Time domain input/output 
data-based techniques include extended Kalman filters (Huchuk, A. Cruickshank, O’Brien, & 
Gunay, 2014), maximum likelihood, prediction error minimization and subspace system 
identification (Candanedo, Dehkordi, & Lopez, 2014).  This approximation results in a 
simplified model which in general is not adaptable to parameter variations. The model may or 
may not describe long-term dynamics depending on the number of time constants of the 
corresponding RC network. Madson and Holst in (Madson & Holst, 1995) suggested using a 
two time constant model for a single-story building.  They utilized maximum likelihood method 
for identifying the model parameters.  (Wang & Xu, 2006) combined physics law 
approximation with parameter identification based on operation data to obtain a simplified 
model of a thermal zone in a building yielding a multiple time constant model that takes into 
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account internal mass and multilayer external wall/roof thermal dynamics. They used a genetic 
algorithm to identify the parameters corresponding to the internal mass. 

3. OBJECTIVE AND METHODOLOGY 
The objective of this work is to contrast two modeling approaches in assessing the potential of 
MPC to reduce the power demand associated with space heating during critical grid peak event. 
The first method uses a detailed (physical) building model implemented in TRNSYS and a 
generic optimization tool (GenOpt) to perform control optimization. The second approach uses 
a simple RC network to model the same building, together with a parameter identification 
method and an optimization process implemented in Matlab. Both methods are compared using 
a simulation environment based on TRNSYS and combining GenOpt to TRNSYS (detailed 
model) or Matlab to TRNSYS (RC model). 

3.1 Methodology 
The following steps are the common path for the implementation of the two approaches. More 
details can be found in the corresponding sub-sections. 

• Define the main assumptions (optimization problem) for this study  
• Implement a TRNSYS model of the selected building to act as a reference that will be 

used to assess the different control strategies 
• Define a cost function that includes on-peak/off-peak electricity cost and penalties for 

constraints violation 
• Implement the MPC approach with both models 

o Couple GenOpt and TRNSYS and compare different optimization strategies 
based on the detailed TRNSYS model 

o Develop a simplified RC model in Matlab, perform parameter identification, 
couple Matlab to TRNSYS and implement the optimal MPC strategy in 
Matlab.  

• Assess both control strategies using the detailed TRNSYS model – this means that the 
first control strategy will have no modeling error, as the same model is used both to 
develop the control strategy and to assess its performance 

3.1.1 Main assumptions – optimization problem 
The considered problem is to reduce the electrical demand for heating in a typical house during 
the two periods representing critical conditions for the electrical grid. For the sake of this study, 
the critical period is defined as 5:30 AM to 9:30 AM and 4:30 PM to 8:30 PM. Electricity is 
not considered to be free outside of these on-peak periods but its value is significantly reduced 
– the context is to assess the potential of peak savings for a utility, not to optimize a customer’s 
electrical bill with a realistic on-peak / off-peak tariff.  

The control system is allowed to modify the setpoints in the basement and the living area of the 
house, but not in the bedrooms (which are also electrically heated). It is assumed that the 
thermostat setpoint can be adjusted between 20 °C and 23 °C when the rooms are occupied; 
between 18 °C and 23 °C when they are not occupied. Occupancy in the living area and 
basement is assumed to be the same, during a morning period (6:30 AM to 8:00 AM after the 
occupant wake up and before they leave the house) and an evening period (4:30 PM to 10 PM 
after the occupants return from school/work and before they go to their bedrooms). 
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Figure  shows the on-peak periods as yellow areas and the occupancy periods as blue rectangles. 
The allowable range for the thermostat setpoints is also shown by dotted lines.  

Figure 1: Occupancy, on-peak periods and allowable range for thermostat setpoint 

Only one day is considered in the optimization study, January 12th. That day is the coldest day 
in the typical weather year (CWEC) for Ottawa. The simulation is run form January 1st to 
January 12th to allow for building pre-conditioning, as the multizone building model in 
TRNSYS (Type 56) is initialized with unrealistic temperature profiles (uniform temperature 
across zones and building envelope).  

Uncontrolled disturbances such as weather variables (temperature, solar radiation, etc.) and 
internal gains (from occupants, lighting and appliances) are considered to be known to the 
optimization process (perfect forecasts). This will provide a higher bound for the performance 
of both MPC algorithms and isolate the differences attributable to different models from other 
influences. 

3.1.2 Selected house 
In 1998, the Canadian Centre of Housing Technology (CCHT) built twin houses for research 
purposes according to the R-2000 standard (increased energy performance and air tightness).   
The houses (Figure 2) are typical North-American wood-frame buildings with brick facing, and 
have five main zones (basement, two floors, garage and attic) and the liveable area is 
approximately 210 m2. Home automation systems simulate occupancy by activating appliances, 
lights, water valves and incandescent bulbs (for internal gains due to humans). Measures are 
collected by 23 meters and more than 250 sensors providing 12000 readings every 24 hours 
(Swinton, et al., 2001).  

Figure 2: CCHT house drawings 
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3.1.3 TRNSYS model 
The TRNSYS model of the CCHT house has five thermal zones (first floor, second floor, 
basement, garage, and attic) and schedules for thermal internal gains (people, appliances and 
lighting). The basement and first floor are assumed to be living spaces, while the second floor 
is a sleeping space with a different occupancy profile. Other zones are not occupied. No detailed 
HVAC system is modeled and the idealized convective heating available in the TRNSYS 
multizone building model (Type 56) is used, as it is a reasonably accurate representation of 
electric baseboard heating commonly used in Québec. The maximum heating power in living 
room, sleeping room and basement is set to 7.5kW, 5kw and 5kW to represent the capacity of 
installed electric baseboards. 

Type 56, the multizone building model in TRNSYS, is the main element of the system model. 
This component (TRNSYS “Type”) has all the details about house’s geometry and materials, 
and optional inputs for external heating/cooling and internal gains. Other elements of the 
TRNSYS model define the shading and the basement-ground coupling model (Type 1244). 
Infiltration is set to a constant value of 0.075 ACH.  

3.1.4 Cost function 

The cost function J , in equation (1), represents a measure of the power demand for the on-peak 
and off-peak hours but not the real cost of electricity or power.    
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In this cost function the first term represents the heat power demand costs, where iU  denotes 
the heat power at time i . iR denotes the heat power price. As the optimization objective is to 
minimize power demand during peak hours, a relatively larger weighting factor is assigned for 
the on-peak power by setting the price to be 100 times of that in off-peak periods.  

The second term in this cost function is a penalty function that guarantees the desired 
temperature comfort levels. i.e.,

ii uil TTT ≤≤ , where iT denotes the temperature and 
il

T and
iuT

represent the lower and upper bounds at time i  respectively. μ denotes the weighting factor for 
this penalty function. Its value is selected to be 10000 by trial and error to implement a soft 
constraint on the room temperature without compromising numerical stability. The penalty 
function is evaluated as zero when the room temperature is between the defined intervals but is 
much larger when the temperature does not obey the comfort limits. 

The actual cost function implemented in the two MPC approaches is slightly different (see 
details in the corresponding sections below), but the performance presented in the Results 
section is always assessed using the cost function described here above. 

4. IMPLEMENTATION 

4.1 Optimization with GenOpt 
GenOpt is a generic program developed mainly for building system optimization with an 
extended library of optimization algorithms. It can be used with any text-based simulation 
program (Wetter, 2001). 

As illustrated above, TRNSYS is used for the building simulation. Before launching the 
optimization in GenOpt, templates of input and output files have been created in TRNSYS. In 
each optimization, GenOpt updates the variables, i.e. set points in this case, in the templates. 
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GenOpt then searches for the minimal cost function value among all the optimization results. 
In this study, the “Hybrid Generalized Pattern Search Algorithm with Particle Swarm 
Optimization” Algorithm is employed (Wetter, 2011).

The cost function is calculated inside of TRNSYS, as well as penalty function and all other 
constraints, so that GenOpt only needs to read the designated parameters in corresponding files. 

4.2 Optimization with Matlab 
In this section, the procedure for developing an online MPC-based heating control is presented. 
The following subsection derives the simplified model that is required for this control approach. 

4.2.1 Simplified model and parameter identification 
The concept of thermal zone can be utilized to describe the heat flux in a building. Once a 
thermal zone is specified, a lumped RC network can describe the zone temperature at each time. 
The model may or may not describe long-term dynamics depending on the number of time 
constants of the corresponding RC network. In this work we use a network consisting of six 
resistances and three capacitances as shown in Figure 3. In this figure, sφ , lφ  and bφ  denote the 
overall heat that is being injected in the zones. This heat includes the (controlled) heating power, 
internal heat gains and solar radiation. 

Figure 3: RC model schematic 

Therefore, the following model describes thermal dynamics in the model. 

(2) 

Where the vector [ ]Τ= bls TTTx denotes the matrix of system states consisting the sleeping 
room, living room and basement temperatures. [ ]Τ= bls UUUU denotes the control inputs 
which are heat addition rates (heating power) to each zone, and 

[ ]gambsolbIGlIGsIG TTW φφφφ ___=   represents the disturbance inputs where sIG _φ , 

lIG _φ  and bIG _φ  denote the internal heat gains corresponding to each zone, solφ  denotes the solar 

radiation incident on the South façade (used as a proxy for the total solar gains), ambT   denotes 
the ambient temperature and gT denotes the ground temperature. The triple  ( )ccc EBA ,,  is 
obtained as follows and consists of parameters that will be identified. 
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Where 1α , 2α  and 3α  denote multiplication coefficients applied to the solar radiation for each 
thermal zone.  

We used prediction error minimization for the purpose of identifying the twelve parameters.  
As such, we consider the discrete time form of the equation (2) as follows: 

( ) ( ) ( ) ( )kEWkBUkAxkx ++=+ 1 (4) 

Where the triple ( ) 633,, ××ℜ∈EBA  denotes the discretized form of ( )ccc EBA ,,  by using zero-
order hold method. 

We assume the availability of the information about the state vector, control inputs and the 
disturbance inputs and estimate the parameter values that result in the minimal error between 
the predictions and true states by solving the following problem for the parameter identification 
of the three-zone building: 

Given ( )kx , ( )kU  and ( )kW  for Nk ,,1,0= , find the matrices A , B  and E that minimize the 
error function E : 

( ) ( )( ) ( ) ( )( )11ˆ11ˆ
1

0
+−++−+=

Τ−

=

kxkxkxkxE
N

k

(5)

Where ( )kx̂  denotes the model state at time k and depends on the 12 parameters, namely 1R , 

2R , 3R , 4R , 5R , 6R , 1C , 2C , 3C , 1α , 2α , 3α , as follows: 

( ) ( ) ( ) ( )kEWkBUkAxkx ++=+ 1ˆ     for 
1,,1,0 −= Nk

(6)

In this identification problem, N denotes the number of training samples and therefore the 

period of time selected for training will be 
sf

N 1×  hours   where sf  denotes the sampling 

frequency ( [ ]hour
1 ). In the next section, we use the identified building thermal model for the 

purpose of centralized control of zone temperature setpoints. 

The identification and validation algorithms can be summarized by the following steps: 

• Identification 
a) [Training Step]: The optimal control input (Power heat) 

[ ]Τ= )()()()( kUkUkUkU bls corresponding to the obtained temperature 
setpoints from the GenOpt optimization are considered as the  control  input during 
the first 12 days of January. This choice ensures that the generated input/output 
training data provides enough excitation. The corresponding outputs, i.e., the zone 
temperatures ( )kTs , ( )kTl  and ( )kTb  for 12412,,1,0 −××= sfk  are “measured” 
(received from the TRNSYS simulation) and the disturbance inputs  ( )kW  for 

12412,,1,0 −××= sfk  are collected. Note that due to the modelling structure, all 
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of the states of the system are measurable and therefore there is no need to observe 
the states. 

b) The one-step ahead predicted outputs, i.e., 

( ) ( ) ( ) ( )[ ]Τ+++=+ 1ˆ1ˆ1ˆ1ˆ kTkTkTkx bls for 12412,,1,0 −××= sfk  are 

formulated based on current system states ( ) ( ) ( ) ( )[ ]Τ= kTkTkTkx bls , current 

control input [ ]Τ= )()()()( kUkUkUkU bls , current disturbance input ( )kW  for
12412,,1,0 −××= sfk , and the unknown model, i.e., ( )EBA ,, and by using 

equation (6).  
c) The prediction error minimization problem is solved by using interior point 

algorithm, yielding ( )EBA ,, .  
d) Finally, the parameters are identified as follows: 

• The diagonal values of the matrix B  give the capacitance values ( 1C , 2C ,

3C ).  
Once the capacitance values are determined, 

• The 4th column of the matrix E  gives the solar radiation coefficient values 
( 1α , 2α , 3α ). 

• The 5th and the 6th columns of the matrix E  give 1R , 2R , 3R , 6R  values. 
• 2,1A  and 3,2A  give 4R  and 5R . 

• Validation  

a) The optimal control input (Power heat) [ ]Τ= )()()()( kUkUkUkU bls

corresponding to the obtained temperature set-points from the GenOpt optimization 
are considered as the control input during 12th day of January. The corresponding 
outputs, i.e., the zone temperatures ( ) ( ) ( ) ( )[ ]Τ+++=+ 1111 kTkTkTkx bls for 

12412,,2411 −××××= ss ffk  are “measured” (received from the TRNSYS 
simulation) and the disturbance input ( )kW  for 12412,,2411 −××××= ss ffk
are collected. As mentioned previously, all of the states of the system are measurable 
and therefore there is no need to observe the states. 

b) The one-step ahead predicted outputs, i.e., 
( ) ( ) ( ) ( )[ ]Τ+++=+ 1ˆ1ˆ1ˆ1ˆ kTkTkTkx bls for 12412,,2411 −××××= ss ffk

are calculated based on current system states ( ) ( ) ( ) ( )[ ]Τ= kTkTkTkx bls , current 

control input [ ]Τ= )()()()( kUkUkUkU bls , current disturbance input ( )kW  for 
12412,,2411 −××××= ss ffk , and the previously determined model, i.e., 

( )EBA ,, and by using equation (6).  
c) The root mean square deviation (RMSD) between the measured outputs and the one-

step ahead predicted outputs corresponding to all three zone temperatures during 
12th day of January are calculated and obtained as 0.07, 0.4 and 0.5 °C for sleeping 
room, living room and basement respectively and the corresponding RMSD for the 
24 hours-step ahead predictions are obtained as 0.7, 1.15 and 2.05 °C for sleeping 
room, living room and basement respectively. 
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4.2.2 MPC Approach  
This section presents the optimal set-point solution to the MPC problem for the building. In this 
structure the following dynamic thermal equations that were developed in Section 4.2.1, govern 
the control design through performing the predictions based on the control input information.   

( ) ( ) ( ) ( )kEWkBUkAxkx ++=+ 1 (7)

We are now in position to state our MPC problem.  

At any time kt , { },2,1,0∈k , given ( )kx  and ( ) ( ) ( ){ }1,,1, −++ PkWkWkW , find the input 

sequence ( ) ( ) ( ){ } 3|1,,|1,| ℜ∈−++ kPkUkkUkkU , that minimizes the cost function ( )kJ : 

( ) ( ) ( )
−

=

Τ +++=
1

0
||)(

P

i
kikUikRkikUkJ (8)

Where the prediction equations are as follows 
( ) ( ) ( ) ( )kikEWkikBUkikAxkikx ||||1 +++++=++   for 1,,1,0 −= Pi (9)

and ( ) ( )kxkkx =|   
Moreover, the constraints of the problem are given by 

( ) ( ) ( )ikskikUikS +≤++ |    for 1,,1,0 −= Pi (10)

( ) ( ) ( )ikgkikxikG +≤+++ |1    for 1,,1,0 −= Pi (11)

( ) ( ) ( )ikgkikxikG eqeq +=+++ |1    for 1,,1,0 −= Pi (12)

In equation (8), the prediction horizon is represented by P  and
( ) ( ) ( ){ }1,,|1,| −++ PkUkkUkkU  denotes the set of designed control inputs that minimize 

the objective function. ( ) 33×ℜ∈+ ikR  denotes a positive definite matrix representing the input 
penalty matrix corresponding to the time instant ik +  for 1,,1,0 −= Pi . In equation (9) 
( )EBA ,,  represents the linear state space model as previously given in equation (7). Equation 
(10) represents the constraints on inputs. Equation (11) represents the set of state constraints at 
each time instant 1++ ik  for 1,,1,0 −= Pi . These constraints represent the lower and upper 
limits of temperature, i.e., the temperature comfort zone. Finally, equation (12) represents a set 
of equality constraints on zones temperatures, namely, the zones that are assigned to have equal 
temperatures and the zones that are assigned to have a certain temperature value. The 
constraints stated in equation (10) (11) and (12) can be translated to constraints on control input 
by using equation (9) and represented in the form of linear constraints as follows 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )+=++++++

+≤++++++
+≤++

ikgkikEWkikBUkikAxikG
ikgkikEWkikBUkikAxikG

ikskikUikS

eqeq |||
|||

|
for 

1,,1,0 −= Pi
(13)

The optimization algorithm can be summarized by the following steps: 

• At any time kt , { },2,1,0∈k : 

a) ( )kTs , ( )kTl  and ( )kTb  are “measured” (received from the TRNSYS simulation).  
b) The MPC optimization problem is solved by using active set algorithm, yielding 

( ),| kikU +∗  for 1,,1,0 −= Pi . 

KZ
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KZ
Highlight

KZ
Highlight



P04, Page 10 

9th International Conference on System Simulation in Buildings, Liege, December 10-12, 2014 

c) The zone temperatures ( )kT s
∗ , ( )kT l

∗  and ( )kT b
∗   corresponding to the optimal 

control signals are obtained from the internal model provided in equation (9). 
d) ( ) ( ) ( ) ( )[ ]kTkTkTkT bls

∗∗∗∗ =  are sent to the TRNSYS model to be used as 
thermostat set-points ( ( )kT s

∗  is actually ignored in this study) 
e) Only the first control signal, i.e., the heating power, is applied and the optimization 

process is started again at the next time step (receding horizon). 

5. RESULTS 
All the results presented in this section are for January 12, as an example of a very cold day that 
would cause a critical peak event on the electrical grid. From the utility’s point of view the 
objective is to reduce the peak power demand of a large set of houses where demand-shifting 
strategies would be implemented. The main criterion used to assess the performance of different 
control strategies has therefore been selected as the average power used during the on-peak 
period, rather than the absolute peak power for one particular house. The maximum power 
during the on-peak period is also reported in the results. 

5.1 Base cases 
Two base cases are considered for comparison with MPC results: constant setpoint and night 
setback cases, as shown in Figure 4 and Figure 5. The heating power in the sleeping zone is 
reported only for reference, because it will not be affected by predictive control strategies. 

The constant setpoint profile in Figure 4 results in a significant electrical demand during the 
on-peak periods; while the demand is actually lower during most of the day (January 12th is a 
sunny day, which is often the case for extremely cold days in Québec). The average power 
demand during on-peak periods is 6 kW. 

The night setback setpoint profile shown in Figure 5 leads to a large increase of the heating 
power at the end of the 2 setback periods, which were set between 7:45 and 16:00, and between 
21:30 and 6:00 (the setback periods are chosen by trial and error so that the temperature can 
reach the thermal comfort requirement just when the living room is occupied). This results in a 
higher power demand at the beginning of the morning on-peak period but since the setback 
period starts within the on-peak period, the overall performance (indicated by the average 
electrical power demand during the on-peak periods) is marginally worse than for the constant 
setpoint scenario, at 6.6 kW. 

In both Figure 4 and Figure 5, we can see that the heating power drops suddenly at around 19 h 
because dishwasher (1.7 kW) and dryer (8.1 kW) are turned on at this moment. Other drops are 
due to one or more zones overheating due to internal gains or solar gains. 
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Figure 4: Constant Setpoint 

Figure 5: Night Setback 

5.2 GenOpt + TRNSYS MPC 
The setpoint profile obtained by MPC with GenOpt is shown in Figure 6. The optimal control 
strategy reduces the heating setpoint during unoccupied periods (even though the “cost” 
associated with electricity within these periods is very low), and ramps up the setpoint to the 
maximum allowed value approximately 3 h before the on-peak periods so that the building is 
preheated (the preheating is shorter in the afternoon). The building is then left free-floating until 
it cools down to the lower setpoint limit.  

While the general shape of the setpoint profile corresponds to what was expected, the jagged 
profile is somewhat surprising. The sudden changes in the setpoint can be attributed to two 
phenomena. First, there is a lack of feedback to the optimization process in case of a sudden 
drop: once the setpoint drops faster than the rate at which the building cools down naturally, 
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there is no difference in the cost function until the setpoint reaches some constraints. Second, 
GenOpt algorithms are sensitive to numerical noise in the cost function and building simulation 
programs often results in noisy numerical results. The optimization process was also found to 
be sensitive to initial values, as will be shown below in Section 5.4. 

Figure 6: MPC with GenOpt 

The average power demand during on-peak periods is 2.6 kW, which is a significant reduction 
(over 50 %) compared to the base cases. The computing time is very significant, with a 12-day 
simulation (with a 1-day optimization) taking more than 16 h of computing time on an i7-4770 
CPU (3.5 GHz) – the same simulation with a constant setpoint or night setback profile takes 
about 20 seconds. 

5.3 Matlab (RC-model) MPC 
The internal model required by the online MPC approach was obtained using first 12 days of 
January as the training samples. For the purpose of online control with MPC, the optimization 
problem was solved by using FMINCON function in MATLAB. The prediction horizon is set 
to 24 hours as in the case of the GenOpt optimization. However, other tests have shown that 
similar results are obtained for any prediction horizon longer than 4 hours. A receding horizon 
is applied and the process is repeated at every time step. It can be clearly observed from Figure 
7 that the online controller decides to preheat the living room around 1:15 AM, a long time 
before the peak period starts. The strategy then differs from the GenOpt-TRNSYS results in 
that some heating is applied during the first on-peak period. This results in a lower cooling 
down rate that seems to miss the minimum allowable value at the end of the morning occupancy 
period. Preheating is then used again before the second on-peak period, although not using the 
maximum available power. Again, the profile is sometimes jagged, which can be partly 
attributed to the same reasons as for the GenOpt-TRNSYS results. In addition, the model used 
internally by the optimization algorithm is not 100 % accurate (as shown by RMSD values in 
section 4.2.1), which leads to corrections at each time step given the receding horizon method. 
The MPC results are also sensitive to initial values and to cost function parameters, as discussed 
below. 



P04, Page 13 

9th International Conference on System Simulation in Buildings, Liege, December 10-12, 2014 

Figure 7: MPC with MATLAB 

The average power demand during on-peak periods is about 4 kW, which is not as impressive 
as the GenOpt-TRNSYS results but is still a significant reduction (33 %) compared to the base 
cases. The computing time is very acceptable, with the 12-day simulation taking about 4 
minutes (12 times longer than the constant profile, but about 250 times faster than TRNSYS-
GenOpt).  

5.4 Sensitivity of the optimization processes 
During the development of the optimization methodology, several different initial conditions 
were tested. The results presented above for the GenOpt-TRNSYS optimization rely on initial 
values that are based on a previous study (Kummert et al, 2011).  

If initial values are set to 21 °C for the whole day, the optimization process reaches a very 
different solution with large oscillations shown in Figure 8. Even though the difference in cost 
function (power used during the on-peak periods) is only marginally affected, the solution is 
clearly less desirable than the one obtained with “informed” initial values. The computational 
time is also affected (more than doubled). 
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Figure 8: GenOpt-TRNSYS MPC with poor initial values 

Very large oscillations can be observed on setpoint temperatures and heating power. This can 
be partly explained by the fact that the exact value of the setpoint has no impact on the building 
behavior once it is above the temperature that could be reached with full power or once it is 
below the temperature that would be reached in free-floating, without heating. So there is no 
impact on the cost function when GenOpt tries very different values of the setpoint. To illustrate 
this, consider the situation at 11 AM. GenOpt reduces the setpoint drastically, which results in 
no heating power being required. The building reaches a temperature close to 23.5 °C in free-
floating, while the setpoint is at 20 °C. For that particular time step, the results and the cost 
function would be exactly the same for any setpoint below 22.5 °C. So the value of 20 °C is 
somewhat arbitrary and affected by numerical artifacts. One possible workaround to avoid such 
behavior would be to impose an additional penalty on rapid changes in the setpoint. 

Figure 9: MPC with MATLAB Sensitiviy with off-peak cost of 0.1 
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The Matlab (RC-model) MPC is also sensitive to optimization parameters. The result obtained 
by assigning different values for the heating power matrix, i.e., the off-peak cost of 0.1 instead 
of 0.01 is depicted in Figure 9. It can be concluded that if we consider higher cost for the heat 
power during the off-peak period, no preheating is applied in the morning, nor in the afternoon. 
While it can be expected that preheating will become less interesting as the cost of off-peak 
power rises, the ratio of 0.1 is still sufficiently high that some level of preheating would be 
expected to lower the overall cost. 

5.5 Adding heuristics to the GenOpt-TRNSYS optimization
Simplified setpoint profiles were shown to decrease the computational requirements of complex 
optimization processes while delivering almost the same cost savings, e.g. in (Braun, 2006). 
Figure 10 illustrates the “Jump and Trim” profile, where 5 setpoint values are optimized (versus 
96 for a daily optimization problem with a 15-min time step). This method delivers almost the 
same savings (48.6% as shown in Table 1) as the GenOpt-TRNSYS optimization, with a much 
reduced computational time (20 minutes vs. 16 hours).  

Figure 10: Jump and Trim profile 

The “Linear Setpoint” profile differs from Jump and trim in that the temperature drops linearly 
during each 4h stretch instead of one time step as shown in Figure 11; while “Exponential 
Setpoint Profile” lets the setpoint decrease exponentially, with two different time constants 
during the two on-peak periods. The exponential profile delivers 49.4% savings while the linear 
profile 37.9%; but both methods show about the same reduction in computational time (down 
to 20 minutes).  
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Figure 11: Linear Setpoint Profile 

Figure 12: Exponential Setpoint Profile 

Finally, the last heuristic method considered is to find the lowest power demand during the peak 
time, which might be interesting in the perspective of a utility company allowing a given power 
usage to selected customers during critical peak events. Figure 13 illustrates the results of this 
approach. The average power usage during on-peak periods is slightly higher than for the other 
optimization results, but the maximum power requested at any 15-min time step by the house 
is the lowest of all, at 4 kW (vs. 5 to 8 kW for the other results). 
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Figure 13: Minimum Power Demand at Peak Time 

6. DISCUSSION  
Table 1 summarizes all the approaches mentioned above. Power cost means the final value of 
cost function in each optimization and the reduction percentage is based on the “constant set 
point” case. Average and maximum power demand indicate the mean and maximum values of 
the heating power during the on-peak periods.  

The GenOpt-TRNSYS MPC results in the lowest cost. Significant cost savings are obtained 
from the online Matlab (RC-model) MPC. The latter implies considerably lower computational 
efforts compared to the GenOpt-TRNSYS approach, as depicted by the Indicative CPU Time. 
The Exponential profile shows near-optimal results while its computational time is much less 
than the “full” GenOpt-TRNSYS MPC. Jump and trim results in savings very close to the 
exponential profile. The GenOpt-TRNSYS MPC has the minimum electricity cost while the 
Min Power Demand method has the lowest power demand, which is just over 4kW. 

Table 1: Summary of Results 

  

Power 
Cost 
[-] 

Power Cost 
Reduction 

[%] 

Average Power 
Demand (peak) 

[kW] 

Max Power 
Demand 

(peak) [kW] 

Indicative
CPU 

Time[-]* 
Constant 51.4 0.0% 6.0 8.1 16 sec 
Night Setback 56.3 -9.5% 6.6 15.9 19 sec 
MPC with GenOpt 23.2 54.9% 2.6 5.6 16.3 h  
MPC with Matlab 34.5 32.8% 3.9 6.8 4 min 
Jump and trim 26.4 48.6% 3.0 4.9 18 min 
Linear 31.9 37.9% 3.6 7.7 25 min 
Exponential 26.0 49.4% 2.9 5.4 21 min 
Min Power Demand 31.2 39.3% 3.5 4.2 6.7 h  
* Indicative CPU Time is the time taken to run a 12-day TRNSYS simulation including the GenOpt or Matlab 
optimization process (only one day is optimized).The figures above show that the heating power profile 
during off-peak is affected by the different strategies, with large peaks at the beginning of 
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preheating periods. These large peaks would also be present with more conventional setbacks 
strategies, but not with a constant setpoint. The impact on overall system efficiency, capital or 
maintenance cost is probably negligible for electric baseboard heating, as considered in this 
study. However, this impact needs to be taken into account if other heating system types were 
considered (e.g. hydraulic heating with boiler or heat pump). 

6.1 Limitations of the present study 
This study considers the performance of different control strategies for the coldest day of the 
simulated period, and measures that performance by the average power use during on-peak 
periods. This is in line with the paper objective, which is to compare different model structures 
and to adopt the point of view of a utility trying to assess potential strategies to be implemented 
in a large number of individual houses. It could be used to deal with critical peak demand events 
that typically occur a few times per year. Different contexts would obviously require a different 
cost function and might require a performance comparison on a longer period.  

The selected house is a relatively lightweight building, and results would be different for very 
light or heavy buildings.  

Two main simplifications were made in this study in developing predictive control strategies. 
First, perfect forecasting was assumed for internal gains, occupancy and weather. Second, the 
model used to assess the results is the same model as the one used internally by the GenOpt-
TRNSYS approach. The Matlab (RC-model) approach on the other hand used a simplified 
model internally but was assessed with the detailed TRNSYS model, which can be seen as more 
realistic, as all models will likely have errors compared to a real building. Results need to be 
confirmed using realistic forecasts and even more detailed models for the assessment or 
experimental validation. 

The obtained profiles are sensitive to optimization parameters (cost function and initial values) 
and to numerical noise. The unintuitive shape of some results, such as the lack of pre-heating 
before the afternoon on-peak period in some of them, seems to indicate that the optimization 
results may still be quite far from the actual optimum. With this in perspective, the simplified 
(heuristics-based) GenOpt-TRNSYS methods definitely seem to be more interesting than the 
“brute force” approach.  

Further work will address these points, first by investigating the sensitivity of optimization 
methods and alternative implementations, then by implementing the developed algorithms in 
real buildings. 

7. CONCLUSIONS 
Two different approaches were compared to optimize the power usage of electric heating during 
critical peak events in a typical Canadian house. Perfect forecasts were assumed in both cases. 
Both methods were tested in TRNSYS using a detailed building model. One method (GenOpt-
TRNSYS) used the same model internally to perform the optimization, while the second method 
relied on a much simpler (RC) model implemented in Matlab.  

Both methods deliver a significant reduction in power usage during the on-peak periods. The 
GenOpt-TRNSYS method delivers the largest savings (more than 50 %) at the cost of a very 
high computational effort (simulation time increased by a factor of over 3000 compared to the 
base case). The RC-model approach delivers less impressive savings (33 %) but at a much more 
reasonable computational cost (simulation time increased by a factor 12 compared to the base 
case). Heuristic methods restricting the possible setpoint profiles to predefined shapes were 
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shown to deliver near-optimal savings with significantly reduced computational power 
(simulation time increased by a factor of 60 to 80 compared to the base case). 

Both methods are sensitive to optimization parameters and results need to be confirmed on a 
wider set of test cases to assess the optimality of obtained results and their robustness. Realistic 
forecasts should also be introduced prior to implementation into real buildings in order to 
validate the proposed methodology. 
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